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The Zero Temperature Phase Diagram of the Kitaev Model
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We show that the zero temperature phase diagram of the vortex free sector of the Kitaev model is
in one to one correspondence with that of the classical dimer model on the same lattice. We find that
the model generically has three distinct phases. On a honeycomb lattice with a 3× 3 fundamental
domain all three phases are accessible. As the couplings are varied there are two distinct transitions.
The new transition is one to a gapped phase that opens up in the interior of the B phase.
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Introduction.—Kitaev’s observation [1] that a spin 1/2
system on a honeycomb lattice has a gapless phase with
vortex excitations that obey non-Abelian statistics has
stirred a lot of interest [2, 3, 4, 5, 6, 7, 8, 9]. Yao
and Kivelson [5] extended Kitaev’s considerations to the
Fisher (triangle-honeycomb) lattice and found that its
zero-temperature ground state is a chiral spin liquid. We
extend these considerations to the more general setting.

Kitaev models divide into two classes: those defined on
bipartite and non-bipartite lattices. A lattice is bipartite
if its sites can be coloured black and white so that ad-
jacent sites are always of the opposite colour. A Kitaev
model is then bipartite if its Hamiltonian has no inter-
action between bonds of the same colour. We establish
that the vortex free, zero temperature, phases of Kitaev
models are in one to one correspondence with the phases
of classical dimer models.

• Bipartite models have generically three phases, the
third being a previously unnoticed gapped phase
which we refer to as the C phase. This arises only

when a sufficiently large fundamental domain is
considered, e.g. a 3 × 3 hexagonal domain.

As the couplings are varied the C phase opens up in
the interior of the B phase and corresponds to giving a
Dirac mass to the pair of degenerate massless Majorana
Fermions of the B phase. Close to the transition when
the mass gap is small the model is well approximated by
a continuum massive Dirac field theory.

• Non-bipartite couplings lift the degeneracy of the
Majorana modes and the mass gap of one of the
Majorana fields can go to zero to give a chiral spin
liquid as discussed in [5].
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After summarizing the Kitaev model and its formula-
tion in terms of Majorana operators we establish that
the quadratic form associated with the Hamiltonian in
the vortex free phase is precisely the Kasteleyn matrix
of a classical dimer model. This allows us to identify the
phase diagrams of the two models and establish the ex-
istence of a new gapped C phase in the bipartite Kitaev
model and predict the mass gap. It also affords us an un-
derstanding of non-bipartite models such as the extended
Kitaev model of [5] where the couplings can be choosen to
correspond to those of a classical Ising model in its dimer
realization [10]. At the Ising critical point the model has
a low-lying massless spectrum that corresponds to a “rel-
ativistic” chiral Fermion [11] which becomes massive as
the couplings are varied.

The model.—The Kitaev spin model on the hexagonal
lattice is given by the Hamiltonian

H =
∑

x−link

Jxσx
i σx

j +
∑

y−link

Jyσy
i σy

j +
∑

z−link

Jzσ
z
i σz

j (1)

and partition function

Z = Tr(e−βH). (2)

For simplicity we only consider the case of open boundary
conditions as our focus is on the phase diagram of such
models.

With open boundary conditions the model (1) can be
rewritten, after a Jordan-Wigner transformation [1, 3,
5], in terms of Majorana operators ci with the partition
function (2) given by

Z =
∑

u

Tr(e−βH(u)) (3)

and the Hamiltonian

H(u) =
i

2

∑

ij

ciKij(u)cj (4)
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where {ci, cj} = 2δij . The matrix element Kij between
site i and j is given by one of the couplings Jx, Jy or Jz,
up to an overall sign. This rewriting is valid for quite
general couplings which can vary throughout the lattice.
Yao and Kivelson [5] extended Kitaev’s construction to
the Fisher lattice (or triangle-honeycomb lattice).

The most general Kitaev model then assigns positive
couplings to all links and a Z2 gauge field uij to each
z-link between sites i and j.

Unfortunately, for general temperatures the Kitaev
model has not yet yielded an exact solution. However,
the zero temperature ground state is known, thanks to
Lieb’s theorem [12], to be the vortex free state.

Phase diagram equivalence.—In the vortex free case
the uij become ustd

ij , and Kij is the Kasteleyn matrix

of a classical dimer model. In this context ustd
ij is a

Kasteleyn orientation given by the “clockwise odd rule”
[10, 13] around a plaquette. In the thermodynamic limit
the eigenvalues of K can be used to map out the phase di-
agram of the model. The phases of the zero temperature
Kitaev model are therefore in one to one correspondence
with those of classical dimer models.

Dimer models divide into two classes: those defined on
bipartite and non-bipartite lattices. The hexagonal lat-
tice is bipartite while the Fisher lattice is non-bipartite.
The physics of the bipartite and non-bipartite lattices are
quite distinct, so we will discuss them separately.

We begin with the bipartite case for which one can
write K in the form

K =

(

0 A
−AT 0

)

(5)

where the matrix A has real entries and maps between
the black and white sites.

Fourier transforming K one obtains a 2d × 2d matrix
where d is the number of sites of the same colour in a fun-
damental domain and whose determinant D(k) = |P |2
where P = Det[A(k)] with k = (θ, φ).

P , the determinant of A, is then a (Laurent) poly-
nomial P (eiθ, eiφ) in two unimodular complex variables.
One can move off the unit circle by using some of the cou-
plings to define general complex variables z and w. We
will refer the resulting polynomial as the spectral poly-
nomial of the model. It can generically be written in the
form

P (z, w) =
∑

a,b

(−1)
a+b+ab

pabz
awb (6)

where a and b are integers and the coefficients pab are
positive real numbers determined by the couplings of the
model.

The zero locus,

P (z, w) = 0 , (7)

allows one to immediately identify the gapless phase
D(k) = 0. This zero locus is called the spectral curve.

Jx

Jz

Jy
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FIG. 1: On the left is the basic tile for the hexagonal lattice,
showing the activities and our choice of Kasteleyn orientation, with
the corresponding amoeba on the right. The regions exterior to the
curves shown corresponds to the Kitaev A phase while the interior
or amoeba gives the B phase.

Kenyon, Okounkov, and Sheffield [14] and Kenyon and
Okounkov [15] proved that the spectral curve (7), of
a d × d fundamental domain with generic couplings is
a Harnack curve and furthermore that every Harnack
curve arises as the spectral curve of some bipartite dimer
model. Such curves arose in the early twentieth century
mathematics literature. They have very special proper-
ties and can be characterized by what is referred to as
the amoeba of the curve.

Given the correspondence of the quadratic form of the
vortex free sector of the Kitaev model to the Kasteleyn
matrix of a classical dimer model, as pointed out above,
eqn. (7), determines the phase diagram of the zero vor-
tex sector of the Kitaev model. This phase diagram can
conveniently be plotted in terms of the amoeba of eqn.
(7) as we now describe.

Put simply, with z = ex+iθ and w = ey+iφ, eqn. (7) can
be solved for the angles θ and φ (see [16]). There are only
two solutions (Θ(x, y), Φ(x, y)) and (−Θ(x, y),−Φ(x, y))
corresponding to (z, w) and (z̄, w̄). At the boundary of
the zero locus these angles become either 0 or π. The
interior of the domain in the x, y plane bounded by these
curves is the amoeba.

In brief the amoeba can be plotted by noting that on
it

1
∏

p,q=0

P (ex+ipπ, ey+iqπ) ≤ 0 . (8)

The amoeba has bounding curves called ovals. Ovals
never intersect and can be both compact and non-
compact. The genus, g, of the spectral curve is equal
to the number of compact ovals.

The phase diagram of both classical bipartite dimer
models and the zero temperature, zero vortex sector of
Kitaev models then consists of the amoeba and its com-
plement in the plane. The phase transitions of these
models occur on the boundary of the amoeba, i.e. on
the ovals.

For the 1 × 1 fundamental domain with positive cou-
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FIG. 2: The hexagonal tiling which reduces to the square lattice
on bond contraction. Dashed lines correspond to bonds that are
set to zero while all other bonds are allowed to have generic values.

plings Jx, Jy and Jz the spectral curve is given by

P (z, w) = 1 − 1/z − w = 0 (9)

where z = (Jy/Jx)eiθ and w = (Jz/Jy)eiφ. We show the
fundamental tile and its corresponding amoeba in Fig. 1,
see [16] for more details on the amoeba in this case.

The complement of the amoeba consists of both com-
pact and non-compact regions. In the terminology of
dimer models, as models of melting crystals, the non-
compact regions exterior to the bounding ovals consti-
tute the frozen regions. The amoeba itself is referred to
as the liquid phase, and the interior of the compact ovals
as the gaseous phase.

The amoeba corresponds to the critical surface and
gives the gapless B phase of the Kitaev model. The
frozen dimer regions go over to the Kitaev A phase.
There is however a third C phase corresponding to the
gaseous phase of the dimer model.

A gapped phase.—This C phase seems not to have been
observed in the literature. It is a novel phase in that it
has a gap which corresponds to a Dirac mass for the
pair of Majorana Fermions that describe the low energy
excitations of the model.

The simplest example of a model that exhibits a C
phase is the square lattice as shown in Fig. 3. This can
be obtained, by bond contractions [10, 15], from a hexag-
onal lattice, with a 3 × 3 fundamental cell, as shown in
Fig. 2. The Hilbert space of (1) then grows as 218n with
n the number of copies of the fundamental cell and makes
direct or Monte Carlo analysis of the phase diagram dif-
ficult.

The Kasteleyn matrix takes the form (5) and for the
square lattice with four site fundamental tile, which is
the simplest model with a compact oval, we have

A =

(

J11 − J11xe−iθ J12 − J12ye−iφ

−J21 + J21yeiφ J22 − J22xeiθ

)

(10)

The determinant of A gives PSquare which can be pa-
rameterized in the form

P Square = D − A(z +
1

z
) − B(w +

1

w
) (11)

J11J11x

J22

J21yJ12y

J22x

J21J12
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FIG. 3: The most general square lattice tiling with two vertices
of each colour per tile and its amoeba with tz = tw = 0 and
A = B = 1 and D = 10 in eqn. (11).

where D = 2A cosh(tx) + 2B cosh(ty) and z = ex+iθ and
w = ey+iφ so that z and w can now take any complex
values. The key point here is that this particular model
has three phases: Those described in Kitaev’s paper [1]
as the A and B phases together with a new C phase
involving a mass gap. This phase arises when tx or ty
is greater than zero. The phase is bounded by the curve
P Square(ex, ey) = 0 which is the compact oval.

Setting J11x = e−t, J22 = et and all others to unity
puts the model in its C phase and corresponds to the
origin of Fig. 3 where t = ln(4 +

√
15). The masses of

the Majorana modes are m1 = 1 − e−t and m2 = et − 1.
For small t the mass gap is given by t and vanishes when
t = 0 where the C phase disappears. More generally the
gap can be obtained from the lowest eigenvalue of the
Kasteleyn matrix, or estimated from the spectral poly-
nomial whose modulus squared is the determinant of K.

The general bipartite lattice—all of which can be ob-
tained by special reductions, involving bond contractions
[10, 15], of the hexagonal lattice with d × d fundamental
domain containing d2 vertices of each colour—is as fol-
lows: The phase diagram of the zero temperature, zero
vortex Kitaev model is specified by the amoeba of the
spectral polynomial which is given as the determinant of
A as in eqn. (11). The Kasteleyn matrix, K, then de-
scribes a set of Majorana Fermions. On the amoeba the
system is gapless with two of these Fermions being mass-
less. These in turn become massive as one moves inside
a compact oval and the system becomes gapped.

There will in fact be g = (d − 1)(d − 2)/2 compact
ovals. The number, g, of compact ovals is a topological
invariant and is the genus of the spectral curve. As the
couplings are varied some of the ovals may contract to
points. When bond couplings are set to zero, bounding
phases will disappear. One can remove the corresponding
bond from the tiling.

When the system is wrapped on a torus there is an
additional term in the Hamiltonian [5] and a projection
operator in the expression for the partition function (2).
However, one can make the following observation: The
spectrum of the Kasteleyn matrix, K, is discrete and on
the amoeba the partition function depends on the shape
parameter, τ , (often referred to as the modular param-
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eter) of the torus. As one approaches the non-compact
boundary of the amoeba the torus becomes degenerate
and there is a topological transition where the volume
of the torus goes to zero [16]. This can best be seen
in the context of classical dimers where the finite size
corrections correspond to the conformal field theory of a
massless Dirac Fermion.

Non-bipartite models.—The classical dimer model is
also useful in gaining an understanding of the Kitaev
model on a non-bipartite lattice. Again the minimum en-
ergy configuration will correspond to ustd being a Kaste-
leyn orientation and K(ustd) being a Kasteleyn matrix
and its critical surface will describe the gapless phase.

A classic example is the dimer model on the Fisher
lattice, Fig. 4, whose Kasteleyn matrix is given by

K =

















0 0 0 c −B A
0 0 C −B −aeiθ 0
0 −C 0 A 0 −beiφ

−c B −A 0 0 0
B ae−iθ 0 0 0 C
−A 0 be−iφ 0 −C 0

















. (12)

The Pfaffian of K gives the partition function of the two
dimensional Ising model [10]. Setting A, B or C to zero
renders the lattice bipartite and equivalent, by a lattice
reduction [10, 15], to the hexagonal lattice. When C = 0

PFisher = −aA2eiθ − bB2eiφ − abcei(θ+φ). (13)

This crossover from bipartite to non-bipartite Ising like
behaviour was studied in [17].

One can apply this result to the Kitaev model on the
Fisher lattice, studied in [5]. Off the Ising critical surface
the Kitaev model is gapped and is gapless at the critical
point. The mass of the lightest Majorana Fermion gives
the gap.

Setting A = B = C = 1 and a = 1/v1, b = 1/v2 and
c = 1/v3, with vi = tanh(ki), the classical dimer model
gives the partition function

ZHex
Ising = CnormZFisher

dimer (v−1
1 , v−1

2 , v−1
3 , 1, 1, 1) (14)

for the two dimensional Ising model on the hexagonal
lattice. The normalization constant Cnorm is given by

Cnorm = 22NM [sin(k1) sin(k2) sin(k3)]
NM

(15)

and ZFisher
dimer is the dimer partition function on the Fisher

lattice.
The hexagonal lattice Ising model (and hence the Ki-

taev model) is critical for v1v2 + v2v3 + v3v1 = 1; e.g.
for a = b = c =

√
3 with A = B = C = 1, the model is

gapless with two of the six eigenvalues zero at θ = φ = π,
in agreement with [5].

Summary.—In this note we established an equivalence
of the phase diagrams of the vortex free phases of Ki-
taev models with those of classical dimer models. This

a

a

b 

b 

c 

A 

A 

B

B

C

C

FIG. 4: The Fisher Lattice.

allowed us to draw the following conclusions: For bipar-
tite models the B phase, described by a massless Dirac
Fermion, corresponds to the amoeba of a classical dimer
model. Changing the parameters of a sufficiently compli-
cated model one can cross a phase boundary to a new C
phase where this Fermion acquires a mass. Adding non-
bipartite couplings lifts the mass gap degeneracy of the
two Majorana Fermions. The zero-temperature ground
state is then a chiral spin liquid [5]. When the mass gap
corresponding to the lightest Majorana Fermion is very
small the zero vortex sector is well described by a rela-
tivistic chiral Fermion.
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