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Abstract

We construct finite mass, asymptotically flat black hole solutions in d = 5 Einstein–
Yang-Mills–Chern-Simons theory. Our results indicate the existence of a second order
phase transition between Reissner-Nordström solutions and the non-Abelian black holes
which generically are thermodynamically preferred. Some of the non-Abelian configu-
rations are also stable under linear, spherically symmetric perturbations. In addition a
solution in closed form describing an extremal black hole with non-Abelian hair is found
for a special value of the Chern-Simons coupling constant.

Introduction.– The so called ”no-hair” conjecture [1] states that an asymptotically flat,
stationary black hole is uniquely described in terms of a small set of asymptotically measurable
quantities. However, in recent years counterexamples to this conjecture were found in several
theories, most of them containing non-Abelian matter fields. The first non-Abelian ”hairy”
black hole solutions within the framework of d = 4 SU(2) Einstein-Yang-Mills (EYM) theory,
were presented in [2]. Although these solutions were static and spherically symmetric with
vanishing Yang-Mills (YM) charges, they were different from the Schwarzschild black hole and,
therefore, not characterized exclusively by their total mass. However, all known asymptotically
flat EYM solutions are perturbatively unstable and thus they do not contradict the spirit of
the ”no-hair” conjecture (see the review [3]). When considering instead a number d > 4 of
spacetime dimensions, no finite energy asymptotically flat non-Abelian solutions are found
[4, 5] unless the action is supplemented with string-theory inspired higher order YM curvature
terms [6], in which case, again the solutions are classically unstable.

In odd spacetime dimensions, the usual gauge field action can be augmented instead by a
Chern-Simons (CS) term. Such (CS) terms appear in various supersymmetric theories. In the
Abelian case this leads to some new features for rotating black holes only [7]. In the non-Abelian
case however, the CS term can affect the properties of solutions even in the static, spherically
symmetric case. For the d = 5 case considered here, this allows the construction of finite
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mass, asymptotically flat, non-Abelian black hole solutions which generically turn out to be
thermodynamically favoured over the Reissner-Nordström Abelian configurations. Moreover,
some of these solutions are stable against linear, spherically symmetric perturbations.
The model.– In a 4+1 dimensional spacetime, the smallest simple gauge group supporting

a nonvanishing CS term is SO(6). Then we consider a general EYMCS theory with Lagrangian

L =
1

16πG
R ∗1l− 1

4
∗F ∧ F − κǫI1···I6

(

F I1I2 ∧ F I3I4 ∧AI5I6 (1)

− gF I1I2 ∧ AI3I4 ∧AI5J ∧AJI6 +
2

5
g2AI1I2 ∧AI3J ∧AJI4 ∧AI5K ∧ AKI6

)

,

where AIJ are the SO(6) gauge fields, F IJ = dAIJ + gAIK ∧AKJ , G is gravitational constant,
κ the CS coefficient and g the gauge coupling constant.

Our solutions are spherically symmetric with a line element

ds2 = −f0dt2 + f1dr
2 + f2dΩ

2
3, (2)

where fi are functions of r and t in general and dΩ2
3 = dψ2 + sin2 ψ(dθ2 + sin2 θdφ2) is the line

element of the three dimensional sphere.
The general spherically symmetric Ansatz for the SO(6) YM field is given [8]. In the present

work we restrict ourselves to a consistent truncation, SO(4) × SO(2), of that Ansatz. Apart
from simplifying the picture, prominent new physical features are conveniently exposed in this
truncation of the Ansatz, stated as,

A =
1

g

(

w(r, t) + 1

r
Σij

xi

r
dxj + V (r, t)Σ56dt

)

, with i, j = 1, . . . , 4 , (3)

Σij being the representation matrices of SO(4), and Σ56 of the SO(2), subalgebras of SO(6).
The Cartesian coordinates xi are related to the spherical coordinates (r, ψ, θ, φ) as in flat space.

Starting with static solutions, we have found it convenient to choose for the metric function
in (2), f1 = 1/N(r), f2 = r2, f0 = N(r)σ2(r), with N(r) = 1 − m(r)/r2. Then the coupled
static EYMCS equations of motion reduce to

m′ =
1

2
α2

(

3r
(

Nw′2 +
(w2 − 1)2

r2

)

+
r3

σ2
V ′2

)

,
σ′

σ
=

3α2w′2

2r
, (4)

(rσNw′)′ =
2σw(w2 − 1)

r
+ 8κV ′(w2 − 1), (

r3V ′

σ
)′ = 24κ(w2 − 1)w′,

where the prime indicates the derivative with respect to r and α2 = 16πG/(3g2) (a factor of
1/g is also absorbed in κ). The last equation above has the first integral

V ′ =
σ

r3
(K + 8κw(w2 − 3)), (5)

with K an integration constant.
The set of equations (4) admit the scaling transformation

r → λr, m→ λ2m, σ → σ, w → w, V → V/λ, κ→ λκ and α→ λα , (6)
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which is used in what follows to set α = 1.
We consider EYMCS black holes, with an event horizon located at r = rh > 0. In the

vicinity of the event horizon, one finds the following expansion of the solutions

m(r) = r2h +m1(r − rh) + . . . , σ(r) = σh +
3σhw

2
1

2rh
(r − rh) + . . . ,

w(r) = wh + w1(r − rh) + . . . , V (r) = v1(r − rh) + . . . , (7)

where v1 =
σh(K+8κ(w2

h
−3))

r3
h

, m1 =
r4
h
v2
1
+3σ2

h
(1−w2

h
)2

2rhσ
2

h

, w1 =
2(4κrhv1+σhwh)(1−w2

h
)

(m1−2rh)σh

. while for large values

of r, the expression of the solutions is

m(r) =M − Q2

r2
+ . . . , σ(r) = 1− J2

r6
+ . . . , w(r) = ±1 +

J

r2
+ . . . , V (r) = V0 −

Q

r2
+ . . . . (8)

In the above relations, σh, wh and J, M, V0 are parameters given by numerics which fix all
higher order terms, while Q = K/2∓ 8κ.

The only conserved quantities associated with these solutions are the mass M = 3π
8G
M and

the electric charge Q = 4π2

g
Q, which is associated with the U(1) gauge symmetry generated by

Σ56. Other quantities of interest are the chemical potential Φ = V0

g
, the Hawking temperature

TH = 1
4π
σ(rh)N

′(rh) and the entropy S =
π2r3

h

2G
.

The solutions.– The moduli space of black hole solutions includes the Reissner-Nordström
black hole (hereafter RN), described bym(r) =M−Q2

r2
, V (r) = V0−Q/r2, σ(r) = 1, w(r) = ±1.

This solution has an event horizon at rh =
(

M
2
+
√

M2

4
−Q2

)1/2

, which becomes extremal for

Q = M
2
. We have found that for κ ≥ 1/8 and a given Q > 0, the RN black hole presents an

instability with respect to static non-Abelian perturbations, for a critical value of the mass.
This instability is found within the Ansatz (3), for values of the magnetic gauge potential w(r)
close to the value −1 everywhere, w(r) = −1+ǫW (r). The perturbationW (r) starts from some
nonzero value at the horizon and vanishes at infinity, being a solution of the linear equation

r(rNW ′)′ − 4(1− 8κQ

r2
)W = 0 , (9)

where N = 1 − Q2+r4
h

r2
h
r2

+ Q2

r4
. The second term in (9) shows the existence of an effective mass

term µ2 for W near the horizon, with µ2 ∼ 1 − 8κQ/r2h. All physical solutions have µ2 < 0,
with Q/r2h = U(κ) being a monotonic function of the CS coupling constant κ. Then, for given
κ ≥ 1/8, an instability occurs for a critical value of the mass to charge ratio of the RN solution,
with M/Q = (1 + U2)/U . As κ → 1/8, one finds U = 1, while U ≃ 1/4κ for large κ. No
solutions of (9) are found for κ < 1/8, or for perturbations of the form w(r) = +1 + ǫW (r), in
which cases the effective mass for W is always real.

This unstability signals the presence of a symmetry breaking branch of non-Abelian solutions
bifurcating from the RN black hole. These nonperturbative configurations are found by solving
numerically the Eqs. (4), using a shooting method. In this work we have restricted attention
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Figure 1: The profiles of a typical non-Abelian (dotted line) solution with κ = 0.5 is shown
together with the corresponding Reissner-Nordström (RN) black hole (solid line) with the same
mass and electric charge parameters M = 4.186 and Q = 2, respectively (the horizon radius
of RN is smaller than that of the non-Abelian black hole). The intlet shows the corresponding
potential for the perturbation equation (11) below.

to solutions with a monotonic behaviour1 of the magnetic gauge potential w(r). In contrast
to other asymptotically flat non-Abelian black holes [2], some of the EYMCS solutions have
no nodes in the magnetic gauge function w(r). A typical nodeless profile is shown in Fig. 1,
together with the corresponding Abelian solution with the same mass and electric charge.

Solutions smoothly interpolating between the asymptotics (7) and (8) appear to exist for
any value of the CS coupling constant κ ≥ 1/8. In a canonical ensemble, the non-Abelian black
holes with a given κ exist for a finite interval of rh (i.e. of the entropy) only. The detailed
picture depends however on the ratio Q/κ, with a critical value Q(c) = 16κ. For Q 6= Q(c),
the temperature reaches its maximum at some intermediate value of the event horizon radius.
Then a plot of the horizon area as a function of the temperature reveals the existence of several
branches of non-Abelian solutions. The upper branch ends in the critical RN solution with rh =
√

Q/U(κ). The lower branch possesses always a positive specific heat, the Hawking temperature

vanishing there for a minimal value r
(min)
h of the event horizon radius. As r → r

(min)
h , an

extremal non-Abelian black hole solution with a regular horizon is approached. For Q < Q(c)

the near horizon expansion of the solutions implies r
(min)
h = 4

√
3κ(1− w2

h)/
√

64κ2 − w2
h, where

wh satisfies the equation (64κ2−w2
h)Q

2+2κ(1+wh)
2(128κ2(wh−2)+wh(w

2
h−2wh+3)) = 0; for

Q > Q(c), the limiting solution has r
(min)
h =

√
Q− 16κ and wh = 1. Some of these features are

shown in Fig. 2 where we plot the reduced area of the horizon aH = 2π2r3h/Q
3/2 as a function

of the dimensionless temperature tH for a fixed CS coupling constant and several values of

1Although there exist solutions where w has local extrema, it is likely that these are always thermodynami-
cally disfavoured because spatial oscillations in w increase the total mass.
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Figure 2: The dimensionless horizon area is plotted vs. the scaled temperature for the non-
Abelian solutions with several values of the electric charge and a given value of κ. The branch
of Reissner-Nordström solutions is also shown.

the charge parameter Q (both aH and tH are invariant under the scaling symmetry (6)). The
branch of RN solutions is also shown there.

Furthermore, it turns out that the free energy F = M − THS of a RN solution is larger
than the free energy of a lower branch non-Abelian solution with the same temperature and
electric charge, except for configurations with κ close to 1/8 and small enough values of the
charge, Q . Q(c)/3. Therefore the non-Abelian black holes are generically preferred2. This
reveals the existence of a second order phase transition between the RN solutions and the non-
Abelian solutions. These aspects are exhibited in Fig. 3 where the dimensionless free energy
f = GF/Q is plotted as a function of the dimensionless temperature tH = TH

√
Q for two values

of κ. Moreover, as seen e.g. in Fig. 1, for the same values of the mass and electric charge,
the RN solution typically has a smaller event horizon radius (and thus a smaller entropy),
than the non-Abelian black hole. The parameter J which enters the large r asymptotics of the
magnetic gauge potential w(r) increases from zero (for the critical RN solution) to a maximal
value approached at TH = 0.

The overall picture is somehow different for Q = Q(c), in which case, despite the presence
of an electric charge, the non-Abelian black holes behave in a similar way to the vacuum
Schwarzschild-Tangherlini solution, with a single branch of thermally unstable configurations,
see Fig. 2. In the limit rh → 0, these black holes approach a set of globally regular particle-like
solutions, whose mass is an almost linear function of κ.

In the special case κ = 1/8, following the approach in [9], one finds the following exact

2Note that the non-Abelian solutions with large enough temperature have no RN counterparts, see Fig. 3.
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Figure 3: The scaled free energy is plotted vs. the scaled temperature for the Reissner-
Nordström solutions (dotted line) and the two non-Abelian sets of solutions with different
values of the Chern-Simons coupling constant κ and the same charge parameter Q = 3.8.

solution of the EYMCS equations within the general Ansatz (2), (3):

w =
J − 2r2

J + 2r2
, V = F, f0 = F 2, f1 =

f2
r2

=
1

F
, with F =

(

1 +
Q− 2

r2
+

2(r2 + J)

(r2 + J/2)2

)

−1

, (10)

where Q ≥ 2 and J are arbitrary parameters. This describes an extremal black hole with
non-Abelian hair, the regular event horizon being at r = 0 (in these coordinates). The mass,
electric charge and entropy of this non-Abelian deformation of the extremal RN solution are
M = Q/g = 4π2

g2
Q, S = 8π3(Q− 2)3/2/3g2 (note that J does not enter any physical quantity).

In the limit Q→ 2, the solution (10) describes a particle-like soliton with a regular origin.
The stability of solutions.– The fact that we have found nodeless solutions suggest

the existence of non-Abelian configurations stable against spherically symmetric perturbations.
In examining such time-dependent fluctuations, we consider the metric Ansatz (2) with f1 =

1 − m(r,t)
r2

, f2 = r2, f0 = (1 − m(r,t)
r2

)σ2(r, t), the YM Ansatz (3) and the following perturbed
variables3

m(r, t) = m(r) + ǫm1(r)e
iΩt, σ(r, t) = σ(r)(1 + ǫσ1(r)e

iΩt),

w(r, t) = w(r) + ǫw1(r)e
iΩt, V (r, t) = V (r) + ǫV1(r)e

iΩt.

One finds that in the system of linearised EYMCS equations, the functions m1, V1 and σ1 can
be eliminated in favor of w1(r), leading to a single Schrödinger equation for w1:

− d2χ

dρ2
+ UΩ(ρ)χ = Ω2χ, (11)

3The corresponding problem for the SU(2) EYM system has been considered in [5].
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where χ = w1

√
r, dr/dρ = Nσ and

UΩ =
Nσ2

r2

[

6(w2 − w′2 − 1

6
)− 5N

4
+ 12(w2 − 1)

ww′

r
+

(1− w2)2

r2
(
9

2
w′2 + 192κ2 − 3

4
)

+
16κV ′

σ
(rw − 3(1− w2)w′)− r2V ′2(1− 6w′2)

4σ2

]

. (12)

The potential above is regular in the entire range −∞ < ρ < ∞. Near the event horizon, one
finds UΩ → 0; for large values of ρ the potential is positive and bounded. Standard results from
quantum mechanics [10] further imply that there are no negative eigenvalues for Ω2 (and then
no unstable modes) if the potential UΩ is everywhere positive.

Although the potential (12) is not positive definite for all values of Q, κ, we have found
numerically that the condition UΩ > 0 is fulfilled by some of the nodeless solutions (see the Fig.
1 for a such a configuration). Therefore at least some of our solutions are linearly stable. The
full picture is, however, quite complicated and a detailed discussion will be presented elsewhere.
We note only that, by using the approach in [11] we have found that the EYMCS solutions
with one node in w(r) we have constructed are indeed unstable.

Further remarks.– The main purpose of this work was to provide an example of stable,
non-Abelian black holes without scalar fields, in asymptotically Minkowski spacetime.

One should note that, despite the different asymptotic structure of spacetime and the dif-
ferent horizon topology, the solutions in this work have some similarities with the colorful black
holes with charge in Anti-de Sitter (AdS) space [12, 13], which provide a model of holographic
superconductors. In both cases, an Abelian gauge symmetry is spontaneously broken near
a black hole horizon with the appearance of a condensate of non-Abelian gauge fields there,
leading to a second order phase transition. It remains an interesting open problem to clarify
if the asymptotically flat EYMCS black holes may also provide useful analogies to phenomena
observed in condensed matter physics. However, given the presence of several branches, the
picture is more complicated for asymptotically flat solutions and we could not find so far simple
universal relations between the relevant parameters as those found in [12] in the AdS case.

The black holes in this work admit a straightforward generalisation with a cosmological
constant. For Λ < 0, the basic properties of asymptotically AdS configurations were discussed
in [8]. In this case the EYMCS model with a special value of κ can be thought of as a truncation
of the N = 8, d = 5 gauged supergravity [14, 15], with all scalars there taking constant values.
We have found that most of the properties of the asymptotically flat solutions, in particular the
existence of stable configurations, hold also in the AdS case. In this case the solutions within
the restricted SO(4)× O(2) Ansatz (3) contain already all relevant features of the full SO(6)
configurations.

While the existence of hairy non-Abelian black holes with AdS asymptotics is not a surprise
in view of the results in [5], [16], we have found that, the Λ = 0 solutions presented here admit
generalisations with de-Sitter asymptotics (Λ > 0) as well. These black holes, possesing a
regular cosmological event horizon at r = rc > rh, were constructed within the same Ansatz as
in the asymptotically flat case. By using an inflationary coordinate system, one finds also the
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following generalisation of (10), with κ = 1/8 again and

ds2 =
e2Ht

F (r, t)
(dr2 + r2dΩ2

3)− F 2(r, t)dt2, w(r) =
J − 2r2

J + 2r2
, V (r, t) = F (r, t), (13)

where F (r, t)−1 = 1 + e−2Ht
(

Q−2
r2

+ 2(r2+J)
(r2+J/2)2

)

and Λ = 6H2. This configuration describes a

non-Abelian deformation of the extremal RN-de Sitter black holes in [17]. By using the methods
in [17], [18], one finds that (13) shares the basic features of the J = 0 Abelian configuration.

Finally, we conjecture that similar EYMCS solutions exist in higher (odd) dimensions, the
features encountered here being universal.
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