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Prospects of supersymmetry on the lattice

Non-perturbative physics from first principles:

1 SUSY BSM physics: non-perturbative breaking scenarios

2 Lessons from SUSY theories for a general understanding of
strong interactions

3 Gauge ↔ Gravity duality:

← Predictions to be verified and extended with numerical
methods.
→ Insights into quantum gravity from SUSY gauge theories.
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SUSY breaking and the Leibniz rule on the lattice

No-Go theorem: locality contradicts with SUSY

There is no Leibniz rule for a discrete derivative operator. The ac-
tion can only be invariant with a non-local derivative and non-local
product rule. [GB],[Kato,Sakamoto,So],[Nicolai,Dondi]

Further problems [G.B., S. Catterall, arXiv:1603.04478]:

fermonic doubling problem, Wilson mass term

gauge fields represented as link variables

“The lattice is the only valid non-perturbative definition of a QFT
and it can not be combined with SUSY. Therefore SUSY can not
exist!” (Lattice theorist)
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Comparison to other symmetries on the lattice

Chiral Symmetry

Nielsen-Ninomiya theorem:
locality contradicts with chiral symmetry

Ginsparg-Wilson relation: {γ5,D} = 2aDγ5D

fine-tuning

Space-time symmetries

subgroup of symmetry preserved on the lattice

ensures irrelevance of symmetry breaking operators
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General solution by generalized Ginsparg-Wilson relation?
“Mrs. RG, the good physics teacher. . . ”
(Peter Hasenfratz)

Symmetry in the continuum (S [(1 + εM̃)ϕ] = S [ϕ]) implies
relation for lattice action SL:

Generalized Ginsparg-Wilson relation

M ij
nmφ

j
m

δSL
δφin

= (Mα−1)ijnm

(
δSL

δφjm

δSL
δφin
− δ2SL

δφjmδφin

)

Φ[M̃ϕ] = MnmΦm[ϕ]

Still open problem how to find solutions. [GB, Bruckmann, Pawlowski]

. . . but we still don’t completely understand her lesson.
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Sketch of solutions
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only model dependent solutions

partial realization of extended
SUSY

non-local actions

otherwise: fine tuning.
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Super Yang-Mills theory

Supersymmetric Yang-Mills theory:

L = Tr

[
−1

4
FµνF

µν +
i

2
λ̄ /Dλ−mg

2
λ̄λ

]

supersymmetric counterpart of Yang-Mills theory;
but in several respects similar to QCD

λ Majorana fermion in the adjoint representation

SUSY transformations: δAµ = −2i λ̄γµε, δλ = −σµνFµνε
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Why study supersymmetric Yang-Mills theory on the
lattice ?

1 extension of the standard model

gauge part of SUSY models
understand non-perturbative sector: check effective actions etc.

2 controlled confinement [Ünsal,Yaffe, Poppitz] :

compactified SYM: continuity expected
small R regime: semiclassical confinement

3 connection to QCD [Armoni,Shifman]:

orientifold planar equivalence: SYM ↔ QCD
Remnants of SYM in QCD ?
comparison with one flavor QCD
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Supersymmetric Yang-Mills theory:
Symmetries

SUSY

gluino mass term mg ⇒ soft SUSY breaking

UR(1) symmetry, “chiral symmetry”: λ→ e−iθγ5λ

UR(1) anomaly: θ = kπ
Nc

, UR(1)→ Z2Nc

UR(1) spontaneous breaking: Z2Nc

〈λ̄λ〉6=0→ Z2
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Supersymmetric Yang-Mills theory on the lattice
Lattice action:

SL = β
∑
P

(
1− 1

Nc
<UP

)
+

1

2

∑
xy

λ̄x (Dw (mg ))xy λy

Wilson fermions:

Dw = 1− κ
4∑

µ=1

[
(1− γµ)α,βTµ + (1 + γµ)α,βT

†
µ

]
+ clover

gauge invariant transport: Tµλ(x) = Vµλ(x + µ̂);

κ =
1

2(mg + 4)

links in adjoint representation: (Vµ)ab = 2Tr[U†µT aUµT
b]

of SU(2), SU(3)
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Lattice SYM:
Symmetries

Wilson fermions:

explicit breaking of symmetries: chiral Sym. (UR(1)), SUSY

fine tuning:

add counterterms to action

tune coefficients to obtain signal of restored symmetry

special case of SYM:

tuning of mg enough to recover chiral symmetry 1

same tuning enough to recover supersymmetry 2

1
[Bochicchio et al., Nucl.Phys.B262 (1985)]

2
[Veneziano, Curci, Nucl.Phys.B292 (1987)]
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Recovering symmetry

Fine-tuning:

chiral limit = SUSY limit +O(a), obtained at critical κ(mg )

no fine tuning with Ginsparg-Wilson fermions
(overlap/domainwall) fermions3;
but too expensive

practical determination of critical κ:

limit of zero mass of adjoint pion (a− π)

⇒ definition of gluino mass: ∝ (ma−π)2

cross checked with SUSY Ward identities

3
[Fleming, Kogut, Vranas, Phys. Rev. D 64 (2001)], [Endres, Phys. Rev. D 79 (2009)],

[JLQCD, PoS Lattice 2011]
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Low energy effective theory

multiplet1 multiplet2

scalar meson a−f0 glueball 0++

pseudoscalar meson a−η′ glueball 0−+

fermion gluino-glue gluino-glue

Supersymmetry

Particles must ha-
ve same mass.

colourless bound states at low energies consistent with SUSY

simplest assumption: chiral multiplet

glueballs, gluino-glueballs, gluinoballs (mesons)

1
[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]

2
[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]
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Lattice bound dates

multiplet1 multiplet2

scalar meson a–f0: λ̄λ glueball 0++

pseudoscalar meson a−η′: λ̄γ5λ glueball 0−+

fermion gluino-glue: σµνtr [Fµνλ] gluino-glue

Challenging to get signal:

flavour singlet meson states

glueballs

gluino-glue spin-1/2 state

mass determination from exponential correlator

mixing of multiplets considered
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History and status of the project
SU(2) SYM:

multiplet formation found in the continuum limit of SU(2)
SYM [JHEP 1603, 080 (2016)]

SU(3) SYM:

adjoint representation much more demanding than
fundamental one (limited to small lattice sizes)

first SU(3) simulations [LATTICE99,LATTICE2016,LATTICE2017]

results presented here: [S. Ali, GB, H. Gerber, I. Montvay, G. Münster,S. Piemonte,

P. Scior PRL (2019)]

Advanced methods of lattice QCD required:

disconnected contributions [LATTICE2011]

eigenvalue measurements [GB,Wuilloud, Comput. Phys. Commun. 183 (2012)]

mixing using variational methods [JHEP 04 (2019)]

16/37



Introduction N1SYM D4SUSY

β = 5.4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

(w0,χmπ)2

0.0

0.5

1.0

1.5

2.0

2.5

w
0
,χ

m

gg (0)

a − η′(0)

0++(0)

β = 5.5

0.0 0.5 1.0 1.5 2.0 2.5

(w0,χmπ)2

0.0

0.5

1.0

1.5

2.0

2.5

w
0
,χ

m

gg (0)

a − η′(0)

0++(0)

β = 5.45

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(w0,χmπ)2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

w
0
,χ

m

gg (0)

a − η′(0)

0++(0)

β = 5.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(w0,χmπ)2

0.0

0.5

1.0

1.5

2.0

2.5

w
0
,χ

m

gg (0)

a − η′(0)

0++(0)

17/37



Introduction N1SYM D4SUSY

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175

a/(β2w0,χ)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

w
0
,χ

m
g g̃

a − η′
0++

0.00 0.05 0.10 0.15 0.20 0.25

(a/w0,χ)2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

w
0
,χ

m

g g̃

a − η′
0++

Fit w0mgg̃ w0m0++ w0ma−η′
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quadratic fit 0.991(55) 0.97(18) 0.950(63)
SU(2) SYM 0.93(6) 1.3(2) 0.98(6)

Confirmed also by Ward identities.
([Eur.Phys.J. C78 (2018) no.5, 404])
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Phase transitions in supersymmetric Yang-Mills theory

In QCD:

center symmetry breaking

chiral symmetry breaking

→ both transitions crossover

In SYM:

center symmetry

chiral symmetry (at mg = 0)

→ two independent transitions

Deconfinement:

T > T deconf.
c plasma of gluons and gluinos

order parameter: Polyakov loop (PL)

Chiral phase transitions:

T > T chiral
c fermion condensate melts,

chiral symmetry restored

order parameter: 〈λ̄λ〉
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Expectations for the phase transitions

Analytic predictions:

t’Hooft anomaly matching: T deconf.
c ≤ T chiral

c

string theory conjectures for SYM: T deconf.
c = T chiral

c

Earlier lattice investigations with 2 adjoint Dirac fermions (SU(3)):

T chiral
c ≈ 175(50)T deconf.

c [Kogut, Polonyi, Wyld, Sinclair, Phys. Rev. Lett. 54 (1985)]

T chiral
c ≈ 7.7(2.1)T deconf.

c [Karsch,Lutgemeier,Nucl.Phys.B 550 (1999)]

T chiral
c ≈ 7.8(2)T deconf.

c [Engels, Holtmann, Schulze, Nucl. Phys. B 724 (2005)]

systematics not under control, most likely conformal theory

20/37



Introduction N1SYM D4SUSY

SU(2) SYM at finite temperature
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second order deconfinement transition

Tc(SYM)

Tc(pure Yang-Mills)
= 0.826(18).
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Turn off deconfinement by change of boundary conditions

confined

continuity

semiclassical

∞

m0 ∞

R
1

T YM
c

deconfined

thermal → periodic fermion boundary conditions
Z (βB = 1

T ) (thermal ensemble) → Z̃ (βB = R) (Witten index)

βB independent ⇒ continuity in SYM

related: Eguchi-Kawai reductions, Hosotani mechanism
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Compactified SYM with periodic boundary conditions
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intermediate masses: two phase transitions (deconfinement +
reconfinement) [GB,Piemonte],[GB, Piemonte, Ünsal]
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Turn off deconfinement by change of boundary conditions

confined

thermal b.c. deconfined

thermal and period. b.c. deconfined

∞

R
;1
/T

m0 ∞

1
T YM
c

1

TQCDadj
c

at small radius: stronger confining effect introduced by the
lattice fermions
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Towards other 4D supersymmetric gauge theories

Generalized tuning approach:

O(a) SUSY breaking on the lattice

radiative corrections lead to relevant breaking, compensated
by counterterms → tuning

N = 1 SYM: only tuning of gluino mass term required, no
tuning for Ginsparg-Wilson fermions.

⇒ provide a more general approach for 4D SUSY gauge theories
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N = 1 SYM and mixed representations:
supersymmetric QCD

add Nc ⊕ N̄c chiral matter superfield (ψ quarks, Φi squarks)
to supersymmetric Yang-Mills theory

LSQCD =LSYM + |DµΦ1|2 + |DµΦ†2|2 + ψ̄(γµD
µ
f + m)ψ

+ m2|Φ1|2 + m2|Φ2|2

+ i
√

2g λ̄a
(

Φ†1P+ + Φ2P−
)
T aψ

− i
√

2g ψ̄T a
(
P−Φ1 + P+Φ†2

)
λa

+
g2

2

(
Φ†1T

aΦ1 − Φ2T
aΦ†2
)2
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Why consider SQCD

natural extension of supersymmetric Yang-Mills theory

relation to possible extensions of the standard model

SQCD analysis of Seiberg et al.:

Nf < Nc No vacuum

Nf = Nc confinement and chiral symmetry breaking
3
2Nc < Nf < 3Nc infrared fixed point (duality)

Like other SUSY theories beyond N = 1 SYM: conformal or near
conformal behaviour
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Simulations towards SQCD

large number of tuning parameters, reduced to 6 by
Ginsparg-Wilson fermions

complex Pfaffian, but cancellations due to Pf → Pf∗

not well behaved chiral limit:

either near conformal (larger Nf >
3
2Nc)

or unstable vacuum (smaller Nf < Nc)
interesting: Nf = Nc and Nf = Nc + 1

Work in progress:

investigated mixed adjoint-fundamental representation theory

tested simulation program with Yukawa couplings [arXiv:1811.01797

[hep-lat]]

perturbative tuning [Costa, Panagopoulos], [Wellegehausen, Wipf], [Giedt], [Curci,

Veneziano]
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From N = 1 to N = 4 supersymmetric Yang-Mills theory

N = 4 supersymmetric Yang-Mills theory is obtained from N = 1
supersymmetric Yang-Mills theory in 10 dimensions via dimensional
reduction.

1 Majorana-Weyl fermion → 4 Majorana fermions

6 additional gauge fields become scalars Xi

Yukawa interactions

Additional bosonic term:

SB =

∫
d4x

[
1

2
DµX

iDµX i +
1

4
[X i ,X j ]2

]
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N = 4 supersymmetric Yang-Mills theory

Interesting theory:

gauge-gravity duality, string theory. . .

Large supersymmetry reduces fine tuning:

naive expectation: large SUSY, large fine tuning

However: maximal SUSY allows to preserve sub-group on the
lattice

preserved SUSY constrains counterterms
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Twisted formulation: example N = (2, 2) SYM in two
dimensions

Field content:

2 Majorana fermions λI

two scalar fields B I , and two gauge fields Ai

Twisted symmetry group:

SO(2)E Lorentz group, SO(2)I flavour symmetry

decompose fields according to SO(2)′=diag(SO(2)E×SO(2)I )

Q becomes a matrix:

Q = qI + qµγµ + q12γ1γ2

Scalar supercharge {q, q} = 0: q can be preserved on the lattice
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Example N = (2, 2) SYM in two dimensions

action is a q-exact form

scalar fields transform as vectors and are combined with A
into complexified gauge field

Dirac-Kähler fermions (η, ψµ, χ12)

Lattice structure:

ψµ, Aµ on links, χ12 on (backward) diagonal
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N = 4 supersymmetric Yang-Mills theory on the lattice

Similar construction [Ünsal, Kaplan]:

SO(4)E Lorentz group, SU(4) R-symmetry contains
SO(4)R×U(1) part

choose diagonal SO(4)′ part

5 complex “gauge” fields

16 fermionic degrees of freedom (η, ψa, χab)

lattice structure with 5 basis vectors

⇒ reduced fine tuning [Catterall, Dzienkowski, Giedt, Joseph, Wells, JHEP 04 (2011)]
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Continuum limit of N = 4 supersymmetric Yang-Mills
theory

Non-trivial continuum limit:

IR supersymmetry restoration

conformal invariance in continuum limit, broken by lattice
artefacts

β-function vanishes, mass anomalous dimension vanishes

estimate relevant scales by measuring RG flow

effective RG flow for mass anomalous dimension mode
number from Dirac operator eigenvalue spectrum
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Mass anomalous dimension in N = 4 supersymmetric
Yang-Mills theory on the lattice

Obtained from the mode number (preliminary)
(integrated spectral density of D†D)
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N = 4 supersymmetric Yang-Mills theory on the lattice

Challenges:

complex Pfaffian relevant at larger couplings

flat directions introduced by scalar fields

stabilizing the simulations [Catterall, Giedt, Jha (2018)]

continuum limit at larger couplings
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Conclusions

simulation of supersymmetric theories on the lattice is still in
some aspects an open theoretical problem

N = 1 supersymmetric Yang-Mills theory:

theoretical problem is solvable, practical challenges

interesting non-perturbative physics like the phase diagram
can be investigated on the lattice

N = 4 supersymmetric Yang-Mills theory:

alternative approach with conserved SUSY

challenges: larger couplings, stabilization of simulations

Open challenges and ongoing efforts:

generalizing the tuning approach: Can we simulate SQCD and
N = 2 supersymmetric Yang-Mills?

37/37


	Introduction: motivations and obstacles for SUSY on the lattice
	Simulations of N=1 supersymmetric Yang-Mills theory
	Towards general simulations of supersymmetric gauge theories in four dimensions

