Non-perturbative Results for Supersymmetric Yang-Mills Theory and Supersymmetry on the Lattice

Georg Bergner **FSU Jena**

Dublin: November 5, 2020

1 Introduction: motivations and obstacles for SUSY on the lattice

- 2 Simulations of ${\cal N}=1$ supersymmetric Yang-Mills theory
- 3 Towards general simulations of supersymmetric gauge theories in four dimensions

Prospects of supersymmetry on the lattice

Non-perturbative physics from first principles:

- SUSY BSM physics: non-perturbative breaking scenarios
- Lessons from SUSY theories for a general understanding of strong interactions
- Gauge ↔ Gravity duality:
 - ← Predictions to be verified and extended with numerical methods.
 - ullet Insights into quantum gravity from SUSY gauge theories.

SUSY breaking and the Leibniz rule on the lattice

No-Go theorem: locality contradicts with SUSY

There is no Leibniz rule for a discrete derivative operator. The action can only be invariant with a non-local derivative and non-local product rule. [GB], [Kato,Sakamoto,So], [Nicolai,Dondi]

Further problems [G.B., S. Catterall, arXiv:1603.04478]:

- fermonic doubling problem, Wilson mass term
- gauge fields represented as link variables

SUSY breaking and the Leibniz rule on the lattice

No-Go theorem: locality contradicts with SUSY

There is no Leibniz rule for a discrete derivative operator. The action can only be invariant with a non-local derivative and non-local product rule. [GB], [Kato,Sakamoto,So], [Nicolai,Dondi]

Further problems [G.B., S. Catterall, arXiv:1603.04478]:

- fermonic doubling problem, Wilson mass term
- gauge fields represented as link variables

"The lattice is the only valid non-perturbative definition of a QFT and it can not be combined with SUSY. Therefore SUSY can not exist!" (Lattice theorist)

Comparison to other symmetries on the lattice

Chiral Symmetry

- Nielsen-Ninomiya theorem: locality contradicts with chiral symmetry
- Ginsparg-Wilson relation: $\{\gamma_5, D\} = 2aD\gamma_5D$
- fine-tuning

Space-time symmetries

- subgroup of symmetry preserved on the lattice
- ensures irrelevance of symmetry breaking operators

General solution by generalized Ginsparg-Wilson relation?

"Mrs. RG, the good physics teacher..." (Peter Hasenfratz)

Symmetry in the continuum $(S[(1 + \varepsilon \tilde{M})\varphi] = S[\varphi])$ implies relation for lattice action S_L :

Generalized Ginsparg-Wilson relation

$$M_{nm}^{ij}\phi_{m}^{j}\frac{\delta S_{L}}{\delta\phi_{n}^{i}} = (M\alpha^{-1})_{nm}^{ij}\left(\frac{\delta S_{L}}{\delta\phi_{m}^{j}}\frac{\delta S_{L}}{\delta\phi_{n}^{i}} - \frac{\delta^{2}S_{L}}{\delta\phi_{m}^{j}\delta\phi_{n}^{i}}\right)$$

$$\Phi[\tilde{M}\varphi] = M_{nm}\Phi_m[\varphi]$$

Still open problem how to find solutions. [GB, Bruckmann, Pawlowski]

General solution by generalized Ginsparg-Wilson relation?

"Mrs. RG, the good physics teacher..." (Peter Hasenfratz)

Symmetry in the continuum $(S[(1 + \varepsilon \tilde{M})\varphi] = S[\varphi])$ implies relation for lattice action S_L :

Generalized Ginsparg-Wilson relation

$$M_{nm}^{ij}\phi_{m}^{i}\frac{\delta S_{L}}{\delta\phi_{n}^{i}} = (M\alpha^{-1})_{nm}^{ij} \left(\frac{\delta S_{L}}{\delta\phi_{m}^{j}}\frac{\delta S_{L}}{\delta\phi_{n}^{i}} - \frac{\delta^{2}S_{L}}{\delta\phi_{m}^{j}\delta\phi_{n}^{i}}\right)$$

$$\Phi[\tilde{M}\varphi] = M_{nm}\Phi_m[\varphi]$$

Still open problem how to find solutions. [GB, Bruckmann, Pawlowski]

... but we still don't completely understand her lesson.

Sketch of solutions

0.004

-0.004

-0.006

Super Yang-Mills theory

Supersymmetric Yang-Mills theory:

$$\mathcal{L} = \text{Tr}\left[-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{i}{2}\bar{\lambda}\not D\lambda - \frac{m_g}{2}\bar{\lambda}\lambda\right]$$

- supersymmetric counterpart of Yang-Mills theory;
 but in several respects similar to QCD
- ullet λ Majorana fermion in the adjoint representation
- SUSY transformations: $\delta A_{\mu} = -2i\bar{\lambda}\gamma_{\mu}\varepsilon$, $\delta\lambda = -\sigma_{\mu\nu}F_{\mu\nu}\varepsilon$

Why study supersymmetric Yang-Mills theory on the lattice ?

- extension of the standard model
 - gauge part of SUSY models
 - understand non-perturbative sector: check effective actions etc.
- Controlled confinement [Ünsal, Yaffe, Poppitz]:
 - compactified SYM: continuity expected
 - small R regime: semiclassical confinement
- 3 connection to QCD [Armoni, Shifman]:
 - orientifold planar equivalence: SYM ↔ QCD
 - Remnants of SYM in QCD ?
 - comparison with one flavor QCD

Supersymmetric Yang-Mills theory: Symmetries

SUSY

ullet gluino mass term $m_g \Rightarrow \operatorname{soft}$ SUSY breaking

 $U_R(1)$ symmetry, "chiral symmetry": $\lambda \to e^{-i\theta\gamma_5}\lambda$

- ullet $U_R(1)$ anomaly: $heta=rac{k\pi}{N_c}$, $U_R(1) o \mathbb{Z}_{2N_c}$
- $U_R(1)$ spontaneous breaking: $\mathbb{Z}_{2N_c} \overset{\langle \bar{\lambda} \lambda \rangle \neq 0}{\to} \mathbb{Z}_2$

Supersymmetric Yang-Mills theory on the lattice Lattice action:

$$S_L = \beta \sum_{P} \left(1 - \frac{1}{N_c} \Re U_P \right) + \frac{1}{2} \sum_{xy} \bar{\lambda}_x \left(\mathsf{D}_w(m_g) \right)_{xy} \lambda_y$$

Wilson fermions:

$$\mathsf{D}_w = 1 - \kappa \sum_{\mu=1}^4 \left[(1 - \gamma_\mu)_{\alpha,\beta} T_\mu + (1 + \gamma_\mu)_{\alpha,\beta} T_\mu^\dagger \right] + \mathsf{clover}$$
 gauge invariant transport: $T_\mu \lambda(x) = V_\mu \lambda(x + \hat{\mu});$ $\kappa = \frac{1}{2(m_\sigma + 4)}$

• links in adjoint representation: $(V_{\mu})_{ab} = 2 \text{Tr}[U_{\mu}^{\dagger} T^a U_{\mu} T^b]$ of SU(2), SU(3)

Lattice SYM: Symmetries

Wilson fermions:

- explicit breaking of symmetries: chiral Sym. $(U_R(1))$, SUSY fine tuning:
 - add counterterms to action
- tune coefficients to obtain signal of restored symmetry special case of SYM:
 - ullet tuning of m_g enough to recover chiral symmetry 1
 - same tuning enough to recover supersymmetry ²

¹[Bochicchio et al., Nucl.Phys.B262 (1985)]

²[Veneziano, Curci, Nucl.Phys.B292 (1987)]

Recovering symmetry

Fine-tuning:

chiral limit = SUSY limit + O(a), obtained at critical $\kappa(m_g)$

 no fine tuning with Ginsparg-Wilson fermions (overlap/domainwall) fermions³; but too expensive

practical determination of critical κ :

- limit of zero mass of adjoint pion $(a \pi)$
- \Rightarrow definition of gluino mass: $\propto (m_{a-\pi})^2$
 - cross checked with SUSY Ward identities

 $^{^3}$ [Fleming, Kogut, Vranas, Phys. Rev. D 64 (2001)], [Endres, Phys. Rev. D 79 (2009)], [JLQCD, PoS Lattice 2011]

Low energy effective theory

	$multiplet^1$	multiplet ²	
scalar	meson $a-f_0$	glueball 0 ⁺⁺	
pseudoscalar	meson a $-\eta'$	glueball 0^{-+}	
fermion	gluino-glue	gluino-glue	

- colourless bound states at low energies consistent with SUSY
- simplest assumption: chiral multiplet
- glueballs, gluino-glueballs, gluinoballs (mesons)

¹[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]

²[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]

Low energy effective theory

	$multiplet^1$	multiplet ²	
scalar	meson $a-f_0$	glueball 0 ⁺⁺	
pseudoscalar	$meson\ a{-}\eta'$	glueball 0^{-+}	
fermion	gluino-glue	gluino-glue	

Supersymmetry
Particles must have same mass.

- colourless bound states at low energies consistent with SUSY
- simplest assumption: chiral multiplet
- glueballs, gluino-glueballs, gluinoballs (mesons)

¹[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]

²[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]

Lattice bound dates

	$multiplet^1$	multiplet ²
scalar	meson a– f_0 : $\bar{\lambda}\lambda$	glueball 0 ⁺⁺
pseudoscalar	meson a $-\eta'$: $\bar{\lambda}\gamma_5\lambda$	glueball 0^{-+}
fermion	gluino-glue: $\sigma_{\mu\nu}\mathrm{tr}\left[F^{\mu\nu}\lambda\right]$	gluino-glue

Challenging to get signal:

- flavour singlet meson states
- glueballs
- gluino-glue spin-1/2 state
- mass determination from exponential correlator
- mixing of multiplets considered

History and status of the project

SU(2) SYM:

 multiplet formation found in the continuum limit of SU(2) SYM [JHEP 1603, 080 (2016)]

SU(3) SYM:

- adjoint representation much more demanding than fundamental one (limited to small lattice sizes)
- first SU(3) simulations [LATTICE99,LATTICE2016,LATTICE2017]
- results presented here: [S. Ali, GB, H. Gerber, I. Montvay, G. Münster, S. Piemonte,
 P. Scior PRL (2019)]

Advanced methods of lattice QCD required:

- disconnected contributions [LATTICE2011]
- eigenvalue measurements [GB,Wuilloud, Comput. Phys. Commun. 183 (2012)]
- mixing using variational methods [JHEP 04 (2019)]

Fit	$w_0 m_{g\widetilde{g}}$	$w_0 m_{0^{++}}$	$w_0 m_{\mathrm{a}-\eta'}$
linear fit	0.917(91)	1.15(30)	1.05(10)
quadratic fit	0.991(55)	0.97(18)	0.950(63)
SU(2) SYM	0.93(6)	1.3(2)	0.98(6)

Confirmed also by Ward identities.

([Eur.Phys.J. C78 (2018) no.5, 404])

Phase transitions in supersymmetric Yang-Mills theory

In QCD:

center symmetry breaking

- chiral symmetry breaking
- ightarrow both transitions crossover

In SYM:

- center symmetry
- ullet chiral symmetry (at $m_g=0$)
- → two independent transitions

Deconfinement:

- ullet $T > T_c^{
 m deconf.}$ plasma of gluons and gluinos
- \bullet order parameter: Polyakov loop (P_L)

Chiral phase transitions:

- $T > T_c^{
 m chiral}$ fermion condensate melts, chiral symmetry restored
- order parameter: $\langle \bar{\lambda} \lambda \rangle$

Expectations for the phase transitions

Analytic predictions:

- ullet t'Hooft anomaly matching: $\mathcal{T}_c^{\mathrm{deconf.}} \leq \mathcal{T}_c^{\mathrm{chiral}}$
- ullet string theory conjectures for SYM: $T_c^{
 m deconf.} = T_c^{
 m chiral}$

Earlier lattice investigations with 2 adjoint Dirac fermions (SU(3)):

- $m T_c^{
 m chiral} pprox 175(50) T_c^{
 m deconf.}$ [Kogut, Polonyi, Wyld, Sinclair, Phys. Rev. Lett. **54** (1985)]
- $m T_c^{
 m chiral} pprox 7.7 (2.1) T_c^{
 m deconf.}$ [Karsch,Lutgemeier,Nucl.Phys.B 550 (1999)]
- $m T_c^{
 m chiral} pprox 7.8(2) T_c^{
 m deconf.}$ [Engels, Holtmann, Schulze, Nucl. Phys. B **724** (2005)]
- systematics not under control, most likely conformal theory

SU(2) SYM at finite temperature

- coincidence of deconfinement and chiral transition $T_c^{
 m chiral} = T_c^{
 m deconf.}$ (within current precision) [JHEP 1411 (2014) 049], [GB, López, Piemonte, Phys. Rev. D 100 (2019)]
- second order deconfinement transition

$$\frac{T_c(\text{SYM})}{T_c(\text{pure Yang-Mills})} = 0.826(18).$$

Turn off deconfinement by change of boundary conditions

- thermal \to periodic fermion boundary conditions $Z(\beta_B = \frac{1}{T})$ (thermal ensemble) $\to \tilde{Z}(\beta_B = R)$ (Witten index)
- β_B independent \Rightarrow continuity in SYM
- related: Eguchi-Kawai reductions, Hosotani mechanism

Compactified SYM with periodic boundary conditions

- ullet fermion boundary conditions: thermal o periodic
- at small m (large κ) no signal of deconfinement
- intermediate masses: two phase transitions (deconfinement + reconfinement) [GB,Piemonte],[GB, Piemonte, Ünsal]

Turn off deconfinement by change of boundary conditions

 at small radius: stronger confining effect introduced by the lattice fermions

Towards other 4D supersymmetric gauge theories

Generalized tuning approach:

- O(a) SUSY breaking on the lattice
- \bullet radiative corrections lead to relevant breaking, compensated by counterterms \to tuning
- $m{N}=1$ SYM: only tuning of gluino mass term required, no tuning for Ginsparg-Wilson fermions.
- ⇒ provide a more general approach for 4D SUSY gauge theories

${\cal N}=1$ SYM and mixed representations: supersymmetric QCD

• add $N_c \oplus \bar{N}_c$ chiral matter superfield (ψ quarks, Φ_i squarks) to supersymmetric Yang-Mills theory

$$\begin{split} \mathcal{L}_{SQCD} = & \mathcal{L}_{SYM} + |D_{\mu}\Phi_{1}|^{2} + |D_{\mu}\Phi_{2}^{\dagger}|^{2} + \bar{\psi}(\gamma_{\mu}D_{f}^{\mu} + m)\psi \\ & + m^{2}|\Phi_{1}|^{2} + m^{2}|\Phi_{2}|^{2} \\ & + i\sqrt{2}g\bar{\lambda}^{a}\left(\Phi_{1}^{\dagger}P_{+} + \Phi_{2}P_{-}\right)T^{a}\psi \\ & - i\sqrt{2}g\bar{\psi}T^{a}\left(P_{-}\Phi_{1} + P_{+}\Phi_{2}^{\dagger}\right)\lambda^{a} \\ & + \frac{g^{2}}{2}\left(\Phi_{1}^{\dagger}T^{a}\Phi_{1} - \Phi_{2}T^{a}\Phi_{2}^{\dagger}\right)^{2} \end{split}$$

Why consider SQCD

- natural extension of supersymmetric Yang-Mills theory
- relation to possible extensions of the standard model

SQCD analysis of Seiberg et al.:

- $N_f < N_c$ No vacuum
- ullet $N_f=N_c$ confinement and chiral symmetry breaking
- $\frac{3}{2}N_c < N_f < 3N_c$ infrared fixed point (duality)

Like other SUSY theories beyond $\mathcal{N}=1$ SYM: conformal or near conformal behaviour

Simulations towards SQCD

- large number of tuning parameters, reduced to 6 by Ginsparg-Wilson fermions
- ullet complex Pfaffian, but cancellations due to Pf ightarrow Pf*
- not well behaved chiral limit:
 - either near conformal (larger $N_f > \frac{3}{2}N_c$)
 - ullet or unstable vacuum (smaller $N_f < N_c$)
 - ullet interesting: $N_f=N_c$ and $N_f=N_c+1$

Work in progress:

- investigated mixed adjoint-fundamental representation theory
- tested simulation program with Yukawa couplings [arXiv:1811.01797 [hep-lat]]
- perturbative tuning [Costa, Panagopoulos], [Wellegehausen, Wipf], [Giedt], [Curci, Veneziano]

From $\mathcal{N}=1$ to $\mathcal{N}=4$ supersymmetric Yang-Mills theory

 ${\cal N}=4$ supersymmetric Yang-Mills theory is obtained from ${\cal N}=1$ supersymmetric Yang-Mills theory in 10 dimensions via dimensional reduction.

- ullet 1 Majorana-Weyl fermion o 4 Majorana fermions
- ullet 6 additional gauge fields become scalars X_i
- Yukawa interactions

Additional bosonic term:

$$S_{\mathsf{B}} = \int d^4 x \; \left[rac{1}{2} D_{\mu} X^i D^{\mu} X^i + rac{1}{4} [X^i, X^j]^2
ight]$$

$\mathcal{N}=$ 4 supersymmetric Yang-Mills theory

Interesting theory:

gauge-gravity duality, string theory. . .

Large supersymmetry reduces fine tuning:

- naive expectation: large SUSY, large fine tuning
- However: maximal SUSY allows to preserve sub-group on the lattice
- preserved SUSY constrains counterterms

Twisted formulation: example $\mathcal{N}=(2,2)$ SYM in two dimensions

Field content:

- 2 Majorana fermions λ^I
- two scalar fields B^I , and two gauge fields A_i

Twisted symmetry group:

- $SO(2)_E$ Lorentz group, $SO(2)_I$ flavour symmetry
- decompose fields according to $SO(2)' = diag(SO(2)_E \times SO(2)_I)$

Q becomes a matrix:

$$Q = qI + q_{\mu}\gamma_{\mu} + q_{12}\gamma_{1}\gamma_{2}$$

Scalar supercharge $\{q, q\} = 0$: q can be preserved on the lattice

Example $\mathcal{N} = (2,2)$ SYM in two dimensions

- action is a q-exact form
- scalar fields transform as vectors and are combined with A into complexified gauge field
- Dirac-Kähler fermions $(\eta, \psi_{\mu}, \chi_{12})$

Lattice structure:

ullet ψ_{μ} , A_{μ} on links, χ_{12} on (backward) diagonal

$\mathcal{N}=4$ supersymmetric Yang-Mills theory on the lattice

Similar construction [Ünsal, Kaplan]:

- $SO(4)_E$ Lorentz group, SU(4) R-symmetry contains $SO(4)_R \times U(1)$ part
- choose diagonal SO(4)' part
- 5 complex "gauge" fields
- 16 fermionic degrees of freedom $(\eta, \psi_a, \chi_{ab})$
- lattice structure with 5 basis vectors
- \Rightarrow reduced fine tuning [Catterall, Dzienkowski, Giedt, Joseph, Wells, JHEP 04 (2011)]

Continuum limit of $\mathcal{N}=4$ supersymmetric Yang-Mills theory

Non-trivial continuum limit:

- IR supersymmetry restoration
- conformal invariance in continuum limit, broken by lattice artefacts
- β -function vanishes, mass anomalous dimension vanishes
- estimate relevant scales by measuring RG flow
- effective RG flow for mass anomalous dimension mode number from Dirac operator eigenvalue spectrum

Mass anomalous dimension in $\mathcal{N}=4$ supersymmetric Yang-Mills theory on the lattice

Obtained from the mode number (preliminary) (integrated spectral density of $D^{\dagger}D$)

$\mathcal{N}=$ 4 supersymmetric Yang-Mills theory on the lattice

Challenges:

- complex Pfaffian relevant at larger couplings
- flat directions introduced by scalar fields
- stabilizing the simulations [Catterall, Giedt, Jha (2018)]
- continuum limit at larger couplings

Conclusions

 simulation of supersymmetric theories on the lattice is still in some aspects an open theoretical problem

 $\mathcal{N}=1$ supersymmetric Yang-Mills theory:

- theoretical problem is solvable, practical challenges
- interesting non-perturbative physics like the phase diagram can be investigated on the lattice

 $\mathcal{N}=4$ supersymmetric Yang-Mills theory:

- alternative approach with conserved SUSY
- challenges: larger couplings, stabilization of simulations

Open challenges and ongoing efforts:

 \bullet generalizing the tuning approach: Can we simulate SQCD and $\mathcal{N}=2$ supersymmetric Yang-Mills?